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The reduction of Ti to Tn, however, is effected by the 
residual propagator 

r i = \a{(W-Ea+{a\Y\a))-\a\ . 

These choices correspond to using the quasiparticle 
formalism for the first two reductions and using the 
projection operator formalism for the third reduction. 
As a result one finds that besides Eq. (62) the physical 
equivalence of the augmented system to the original 
system requires W—Ea—{oi\Tii\a)=—Ea—{a\Ti\a}. 
Thus the equivalence obtains only in the limit Ea^W, 
But it is seen that if the projection operator formalism 
is used for all three reductions, then the equivalence 
can be made exact. 

We have shown how an elementary particle state can 
be used to represent a bound state of the system. There 
is no reason why we cannot reverse the procedure and 
use a bound state to replace an elementary-particle 
state. One merely regards Eq. (43) as a complete 
definition of H, Ho, and V rather than a partial defini­
tion of H, Ho, and V. Since H i = H o + V i is now the 

starting point, V must be defined in terms of Vi 

V = V i - V i r V i 

r = - ( l - G Q V i ) - i G Q 

= \a)(Ecc+{a\Yi\a)-W)-^{a\ . (66) 

Equation (62) now plays the role of the definition of 
the matrix elements of V with respect to the new bound 
state I a). 

{a\V\a) = {a\\\a) 

V\a) = V\\a). (67) 

We conclude that it is always possible to interpret 
the discrete states of a system either as bound states 
or as elementary-particle states since the formalism 
presented in this section allows us to switch from the 
one description to the other. 
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The high-energy asymptotic expansion of the Green's function for the scattering of two scalar particles in 
the crossed channel (t channel) is investigated in the ladder approximation by using the scalar-photon-
exchange model with scalar coupHng. It is shown that each term of the asymptotic expansion in the t channel 
exactly corresponds to the solutions of the Bethe-Salpeter equation for bound states if one considers the ex­
pansion in powers of {—t—m'^-^Vo) instead of (—/), where m and VQ^'^ are the internal mass and the constant 
external mass (voT^m^), respectively. It is proved that all normal solutions of the Bethe-Salpeter equation 
appear in this expansion. The problem of whether or not abnormal solutions also appear in this expansion is 
analyzed in detail. Exact solutions in some special cases are presented and discussed. 

1. INTRODUCTION 

IN a previous paper / which we shall refer to as I, we 
obtained the exact solution to the Bethe-Salpeter-

type integral equation for the off-the-mass-shell scat­
tering amplitude in the case /x' = 0, jjL=2m, and ^ = 0 , 
where /x' and fx are the exchanged-meson masses in the 
kernel and in the inhomogeneous term, respectively, s 
being the invariant energy; and we investigated its 
high-energy asymptotic expansion in the crossed channel 
(t channel). I t was found there that in our model the 
leading term and the second one exactly correspond to 
the normal solutions of the Bethe-Salpeter equation for 

* This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

IN . Nakanishi, Phys. Rev. 135, B1430 (1964). 

bound states with n==l+l and n=l-\-2, respectively, 
but the third term does not correspond to those with 
n=l-i-3, where n and I are the principal and the azi-
muthal quantrum numbers, respectively. Since we artifi­
cially introduced a massive meson only in the inhomo­
geneous term in order to avoid infrared divergence, it 
was not clear whether or not the above result was owing 
to the introduction of the special meson. 

The purpose of the present paper is to discuss the 
high-energy asymptotic expansion (in the crossed 
channel) of the Green's function for the scattering of two 
scalar particles in the Bethe-Salpeter formalism in the 
case n^ = fjL = 0 and s arbitrary. In spite of its similarity 
to the equation discussed in I, it is, unfortunately, ex­
tremely difficult to find the exact solution (in closed 
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form) to the integral equation which we encounter here, 
except for a very special case which we already dis­
cussed elsewhere.2 However, we can investigate the 
properties of the asymptotic expansion of the Green's 
function by making some ansatz. We shall make use of 
the analogy from the exact solution obtained in I as 
well as possible. 

In the next section, we summarize various forms of 
the integral equation for the weight function of the 
perturbation-theoretical integral representation. In Sec. 
3, we investigate relations between the coefficients in 
the asymptotic expansion of the scattering amplitude 
and the solutions of the Bethe-Salpeter equation. In 
Sec. 4, the problem of abnormal solutions is discussed in 
detail. Some conclusions are presented in the final 
section. 

2. PRELIMINARIES 

We consider the integral equation 

=. +— / ^ y — , (2.1) 

with 

(k+qy=voy (k+py=v, (k+py=v\ 

(k-qy=wo, (k-py=w, {k-py=w\ (2.2) 
{IkY^S, (p-qy = t, (p'-qy=t\ 

where we have omitted —ie in the denominators for 
simplicity. In (2.2), 2k stands for the total four-
momentum, q, p\ and p denoting the relative momenta 
in the initial, an intermediate, and the final state, re­
spectively. When ^<(wi+W2)2, the off-the-mass-shell 
scattering amplitude f(v,w,i) has the perturbation-
theoretical integral representation: 

xn?(i-9y7-3'C(i-s)y+SM'^+(i-?)yM^ 

+(i-?)y(i-y)«(^o+(i-?)^(i-y)M20]), 

where 

/•I / . I /.OO 

f(v,w,t)= dy dz dy 
Jit J—I JQ 

X-
<piy,z,y) 

with 
[_y+{l-y)^(z,v,w)+y(p.^-i);} 

•, (2.3) 

Kz,v,w)^Ui+z)(mi'-v)+iC^-z)im2'-w). (2.4) 

By a slight generalization of our previous work,^ we get 

/•I /»1 /»00 

'p(y,z,y)=il-y)s(y)+^ dy' dz' dy' 
Jo J^\ JQ 

XK(y,z,y;y',z',y')<p(y',z',y'), (2.5) 

Siy,y',z,z')^e[Riz,z')--- - ) , 
\ y ( i - - y ) / 

y{i-y'h 

y'il-y)j 

R{z,z')= for z^z', 

(2.6) 

(2.7) 

(2.8) 

aiz)^^{l+z){mi^-vo)+^{i-z){m2^-Wo), (2.9) 

p ( 2 ) ^ | ( l + z ) w i 2 + K l - s ) » « 2 ^ - i ( l - 2 ' > - ( 2 . 1 0 ) 

In particular, in case of n' = 0, the kernel (2.6) re­
duces to 

K(y,z,y;y',z',y') 

m-y)®(y,y',z,z')S(y'y-yy') 

y'+y'^'+y'{l-y')a{z')+{l-y')W) 
(2.11) 

Putting 

we have 
'piy,z,y)=s(y)C^-y)'t>iy,^), (2-12) 

<j>{y,z)=l+^\f dz'f dy' 
J^l J Q 

y'-Ki-y')®iy,y',^,z')'l>iy'/) 
X- (2.13) 

y'^'+y'{l-y')aiz')+i^-y'r-p{z') 

If we introduce a variable x through 

y-l(l-y)^X, (2.14) 

then (l>(y,z)^\[/(x,z) satisfies 

)/'(x,s)=l+ i x f dz'f 
J -1 Jo 

X-

dx' 

x'Ux',z') 
. (2.15) 

2 N. Nakanishi, Nuovo Cimento (to be published). 
3N. Nakanishi, Phys. Rev. 133, B214 (1964). 

When the denominator of the integrand is positive-
definite, (2.15) is a Vol terra integral equation so that 
its Neumann series converges for any value of X and 
gives the imique solution. Hence, rl/(Xjz) is an entire 
function of X and holomorphic in the s plane with a cut 
s>(mi+m2y if fJL'^+mi^>vo and fx^+m2^>'Wo. Further­
more, on account of the positive definiteness of the 
kernel, we have \l/(x,z)>l for X>0. 

Now, if we consider the case mi^nti^m and Vo=wo, 
the kernel is invariant under the transformation z~-> —z 
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and s' -^ — s'. This means th2it\l/(x,~z) is also a solution solution to (3.2) is given by 
of (2.15) if \p(x,z) is so. Thus because of the uniqueness 
of the solution, \l/(x,z) must be an even function of 0. -/ x r./ , ^ ̂  
Furthermore, if ^=0 then the kernel is independent of z '̂ ^ '̂̂ ^ -b\--v,v^r\\\\ - ^ ^ , J » V -̂̂ ) 
and/except in i^(s,s'). Defining ^j^j^ 

^-(X+i)^/^-i, (3.4) 
) = i / dz (l—z^y\//(x,z), (2.16) where F s tands for a hypergeometric function. 

*̂ ~̂  The behavior of the scattering amplitude as ^~^oo is 
iP^^'^(x)-= 

and using formulas determined by the behavior of the weight function a t 
y^O,^ bu t it is convenient to consider the asymptotic 
expansion of the latter in powers of x rather than in 

dz 0(R(ZjZ^)—X)= 2(1—X)6(1-'X), powers of y~^. The transformation formula of the hyper-
i geometric function leads to / 

/

I (217) 

dz{i-z')d(R(z,z')-x)=iUi-xni+2X) ' r._s n2p+i) rxKi-z')r 
+2XKl-XXl-z'')y(l-X), ' Cr(''+l)?L4a(o!+x)J 

( ia(a+x)\ 
—p —y —2v\ l+Ofx""^') 

x'{l-z^)J 
^foi(^)= 1+X / dx\ 1 ) , (2.18) = i:(-l)%(^)(^/a)-^-+0(:.—1), 

Jo \ X J y\{x') j=o 
with 

C^ x' r f x\^/ 2x\ 
^m(x) = f + x / dx' 1(1 ) ( l + — ) ~ ^ ( - l )^2-2(-*)r (2v- i+l ) r (^+j-2 i ) 

Jo Tiix'^ \ x / \ x) hj{z)^Y. 
M i\{j--i)\lv{v-i+l)JV{v-i) 

X^|,mi:x')+—(l--\m{x')\, (2.19) 
x'^\ xl J 

X(l-22).-i, (3.5) 
We introduce a quant i ty 

etc., where 

^{x)~{\^x)ii^-^x{m'-v^)^-x^m^, (2.20) /M^O==j ^J ̂  dz 

The formulas (2.17) can be apphed to (2.5) to get a set y^ ^ ' /3 7) 
of reduced equations in case of /xVO. Of course, if one [(l_^)^(2^^^^)_|_^(2a:—0]^' 
wants to have the equation for xj/1^^ alone, it can easily 
be obtained directly from (2.1) with v=w and mi=m2. which, of course, represents a scattering amplitude only 

when a = 2 . We notice a formula 

3. ASYMPTOTIC EXPANSION ri (l-^;)^^ 
dy~ 

^ 0 We first consider the case vo=wo=mi^=m2^ and J^ \(l — y)A+yB'Y 
fjLT^O, We denote xl/(x,z) in this case by i/̂ (x,s). In par­
ticular, when ^==0 and fjL=2m with m = l , (2.15) = i r ( l - a ) r ( a+2)^ -« -2^« - i , (3.8) 
becomes 

^1 ^xRiz,z') ^^^uf 2O "^h.Q.xQ X is defined by (2.14). This formula is valid for 
^(^^^)^jl^_|_i^ / ^^r I ^^f [ ^ (3 1) l>Re^>—2, but if we take Hadamard's finite part^ 

7-1 Jo (2+::̂ :')̂  i^ ^^^ left-hand side, (3.8) can be used also for Rea> 1. 
Applying (3.8) to (3.7) with (3.5), we have 

The exact solution to (3.1) was found in I. We shall dis­
cuss the case }x9^2m in Appendix A. 7/ ,N 1 ^y^V_ivrc |-7-f-l)rr — i-\-2) 

Now, for the sake of later convenience, we consider a ' ^ ' ^ ^ Q 
slightly generalized equation, 

r^ hj{z) {2a-1)^^^ 
/.I ^xRiz,z^) x'\p(x'Z') ^ dz l-0(t-^) 

^(x,z)=l+i\ dz' d/——^, (3.2) J-I \J(z>^.w)J-^' a"-̂ -
J^^ Jo (a+xr ^^^^^ 

which IS obtamed by transformmg x mto 2x/a. The A;=O 
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with 

Sk{v,w) = 
1 

sin̂ -jT 2V{v—k) y=o 

k 2'-iT{v-j+2) 

•I X / dz-

ik-j)l 

1 [fi{z,v,w)'}^^^ 
(3.10) 

We have thus obtained the complete asymptotic ex­
pansion of fiv,w,t), 

In order to see the nature of hj{z), we substitute (3.5) 
and 

(a+x)-' = x-^ ti-^yU+^Xa/xy (3.11) 

in (3.2), and compare the coefficients of each power of 
X. Then it is seen that hj{z) must be a solution of a 
homogeneous equation 

5-function term and some constant factors. From (2.15) 
we have 

^(x,z) = l+- dz'l dx' . (3.16) 
2 7_i Jo a(z')+x'p(zO 

I t is extremely difficult to solve (3.16) in closed form 
even if mi=m27^Vo=Wo and ^ = 0 . However, we can 
apply the method mentioned just above to (3.16) in 
the general case. We introduce an ansatz 

(3.17) 

AX2)== 
X i 

E ( i - i + i ) 
2{v-j) i-o 

xf dz'\ lR(z,z'n-'ki(z). (3.12) 

Therefore, the quantity 

g,z^*(^)-[2-^T(.- i+2)/(^- i ) !]A.X^), (3.13) 

appearing in the expression for Hk(v,w) satisfies 

X J j-i+lT(v-j+2){v-l-i-l)l 

2{v-j) i=o 2^* Viv-i+iyv-l-j-iy. 

x | dz'lR{z,z')J-%iKz'), (3.14) 

When v=n{d. positive integer), (3.14) would be identi­
cal with the Cutkosky equation^ if the factor 
( j — i + 1) /2J~^ were absent. This factor is equal to unity 
only when j==0 or j== 1. This is the reason why only the 
leading term and the second one correspond to the solu­
tions of the Bethe-Salpeter equation.^ However, from 
this reasoning alone it cannot be inferred whether or not 
gniKz) ( i = 0 , l ) corresponds to normal solutions. From 
the explicit expression given in I or (3.6), we know that 

gnAz) = const^oni^T^) for i = 0, 1, (3.15) 

where gKnAz) denotes the Cutkosky function. 
The reason why the third term does not correspond to 

the Cutkosky function seems thus to be due to the fact 
that the inhomogeneous term in the original equation is 
different from the kernel, because the unpleasant factor 
(y—i+1) originates from (3.11). Hence we shall next 
consider the case ^ = 0 but a (2) 5^0. Then f{v,wfy 
is essentially the Green's function apart from the 

4R. E. Cutkosky, Phys. Rev. 96, 1135 (1954). 

in analogy with (3.5), but in (3.17) v is now a function of 
^. In (3.17), a is an arbitrary constant having the dimen­
sion of squared mass, sav Q:=Q:(J). Substitution of 
(3.17) in (3.16) yields 

Hz)--
2{v-j) i=0 7_i [p(2'. 

Since 

v,Wyt) = I dzl 
J-1 Jo 

dy-

CP(3')]^^+' 

X [ — J hi{z'). 

{i-y)^{x,z) 

lO-y)Kz,v,w)+y{-t)y 

(3.18) 

(3.19) 

(3.8) leads to 

[•'+1) 

f{->>,w,m\ E (-i)^T(-.+i+i)r(.-i+2) 

hAz) {-ty 
X l' . (3.20) 

[fi{z,v,w)'y-^^ a'-^ 

As is easily seen, the coefficients of {--ty~^~^ do not 
directly relate to the solutions of the Bethe-Salpeter 
equation except for the leading term i = 0 . Thus the 
simple analogy from the Regge-pole theory in the non-
relativistic potential scattering seems not to be valid in 
field theory. 

In order to find some relation with the solution of the 
Bethe-Salpeter equation, we consider the special case 
mi=m29^VQ=wo hereafter. Then 

a{z) = m^—Vo=a, (3.21) 

An analogous function to Hk(v,w) given in (3.10) can be 
obtained if we consider an expansion in powers of 
(—t—a) instead of (—/): 

["+1] 

with 
TT 1 k T(v-j+2) 

Hk(v,w)^ X) 
sinvTT 2T{v-k) y=o (k-j)! 

hj{z) 

(3.22) 

•L dz-
[fi{z,v,wyY-^+'^ 

(3.23) 
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Then the function 

appearing in (3.23) satisfies 
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expansion of ^'"'(a;) is 

{l=v-k+\) (3.24) 
[̂ +1] r ( 2 j — j + 1 ) 

X ;• T(v-j-^2){v-l-i-l)\ 

^"'^^^^2{v-j) i=o T{v-i-^2){y-l-3-\)\ 

{.R{z,z')l 

•I X / dz-
[p(z')l-'j-i+1 

•g^iK^O. (3.25) 

When v=n, (3.25) is exactly identical with the Cutkosky 
equation. Thus Hh{v,w) exactly corresponds to the solu­
tions of the Bethe-Salpeter equation with n=l+k-\rl. 
But from this reasoning alone we cannot infer whether 
these solutions are normal or abnormal. To determine 
this, it is sufficient to consider a special case ^=0. 
In this case, since (3.16) and (3.2) have precisely the 
same asymptotic form for large x in their iterative 
expansions, the leading term of ^|y{x,z) should be equal 
to that of ^{x,z) in the weak coupling limit X-->0.^ 
Therefore, the functions Hk(v,w) must be normal 
solutions. 

The above conclusion does not, however, exclude the 
possible appearance of abnormal solutions in the asymp­
totic expansion of \l/{x,z), because instead of (3.17) we 
should take a more general ansatz 

KOO,Z)^J: E (-l)^*/^.y(2)(V«)''^-^ (3.26) 
K=o y=o 

where hjiz) satisfies (3.18). We cannot easily see 
whether or not the series of abnormal solutions (/c>0) 
are present. But since ^p{x,z) is an even function of z, 
the abnormal solutions of odd K cannot appear in (3.26). 

4. PROBLEM OF ABNORMAL SOLUTIONS 

In order to investigate whether or not the series of 
fc = 2 exists in (3.26), we shall consider the reduced 
equations (2.18) and (2.19) in this section. Considering 
the case Wi=m2=l, ^o=Wo, and ^==0, we have 

^[0](^)^1+X/ d%\\ . (4.1) 

The solution to this equation was already given in our 
short note^: 

^m{x)^F{-v, v+V, 2; -x/a), (4.2) 

where v is given by (3.4), and a= 1 —ZJQ. The asymptotic 

y=o r(^- i+i)r( . - i+2)i! 

Xf-j +o{x-^), (4.3) 

Considering the forward scattering in the t channel in 
which v=w,we have 

E . + i ] r ( 2 . - i + i ) r ( - . - f y + i ) 
f(v,v,t)= Z ; ; 

X +o(t-') 
Q:''-^"[/5(Z;)]'^^"+2 

= E Hk(v)a-''+^(-~t-ay~^~'+o(t-^) , (4.4) 
^ = 0 

where 

H,(vy 
1 

sini^x T(p~k) 

k ( - i ) . r ( 2 . - i + i ) 1 
X X - — •, (4.5) 

i=o m- j) !r(.- y+1) imi-^' 

with j8(»)= 1—». It is easy to see that the functions 

%^{v) E - - - — (4.6) 

are the normal solutions of the corresponding Bethe-
Salpeter equation, where 'yzm(p) stands for a solid 
harmonic, and 

g,J^{--\y{2n--j)\/j\{n--j)\{n~l--j--l)\. (4.7) 

Thus the normal solutions only appear in the asymptotic 
expansion of yp^^^{x). From this result, however, we 
cannot conclude that the same is true for ^P(x^z), because 
the abnormal solutions vanish when integrated over z 
from — 1 to -f 1 as is seen from 

£ 6^<l~s2)''C/+i/2(^) = 0 for / c -1 ,2 , - . - , (4,8) 

5 This reasoning is not rigorous. We shall explicitly verify this 
statement by special cases in the next section. 

where C/(s) denotes a Gegenbauer polynomial. Since 
abnormal solutions have explicit dependence on p^ 
when the total four-momentum vanishes, they cannot 
appear in the asymptotic expansion of the forward scat­
tering ampHtude even in the case IX'T^O because of 
Lorentz in variance. 

In order to explore the problem of abnormal solutions, 
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therefore, we must consider \p^^^(x) at least: 

r^ dx' rlf x'2 x'\ 
^ii](^) = |+X / 1-3—+2— Ui^K^O 

7o o:+x'L3\ %^ x^ J 

+ ( V̂ K̂̂ O , (4.9) 
\x^ x^ / J 

where i/'̂ ^̂  {x) is given by (4.2). As shown in Appendix B, 
the exact solution to (4.9) is given by 

^[il(x)= ,^(:^)+^-Vf^K^)x(^), (4.10) 

with 

cp{x)^l[_F{-v,v+\)^)-x/a) 

- - ( V « ) n - ^ , ^ + l ; 4 ; - V « ) ] , (4.11) 
and 

X / dx^' ^p^^^(x'')<p{x"), (4.12) 
Jo a+x" 

After somewhat tedious calculation, we obtain the 
asymptotic expansion of \p ̂ ^^ {x): 

2r(2?^+l) / A T v{v^-2)/a / x y r v{v^-2)/a\ 

w L 2(i^+l)W {2v+?>)[V{v+\)J\J L 2(i.+ l)^ 

V /a\^ /x\ "1 
+ -]H- ]+0{x-^) . (4.13) 

2(2z^-l)(2^+l)\^/ \J J 
For the sake of comparison, we write here the asymp­
totic expansions of 

the second terms, their ratios to the respective leading 
terms coincide for î f̂ l(x) and \p^^^{x) if we make a in 
the former correspond to 2a in the latter []cf. (3.7)]. 
Thus we may infer that the leading and the second term 
in the asymptotic expansion of fivjW,t) in powers of 
(~t~a) correspond to the normal solutions with 
n=l+l and those with n=l+2, respectively. 

Now the problem is the third term. The appearance 
of a logarithmic function in the third term of (4.13) is 
remarkable. It gives a term behaving like (—0""^ ln(—/) 
in the asymptotic expansion of f(v,w,t).^ I t corresponds 
to a double Regge pole in the complex angular momen­
tum plane. The appearance of a logarithmic function 
contradicts our ansatz (3.17) or (3.26). Such a situation 
can happen only when the Cutkosky equation (3.25) 
has no solution. Indeed, we shall show in Appendix C 
that gont^{z) is divergent at 5=0. This peculiar situation 
is, of course, due to the degeneracy with the abnormal 
solution with fc= 2. 

We may thus infer that the asymptotic expansion of 
i/(x,z) is much disturbed by the presence of abnormal 
solutions. Unfortunately, it is very difficult to show 
explicitly the existence of the series of the abnormal solu­
tions with fc=2 in (3.26). Instead, we shall content our­
selves by showing that ipix^z) indeed has the contribu­
tion from the abnormal solution with fc = 2. 

In order to avoid the difficulty of degeneracy at ^=0, 
we consider the solution up to the j&rst order of s. 
Since gH^(z) and gui^(z) satisfy the Cutkosky equation 
(3.25), we easily obtain 

X=,(^+l) s+0(s'), 

for y= 0 ,1 . 

¥Hx)^h! dz{l-z^y^ix,z) (4.14) M^i'(^) = ̂ \ 

2{2v+3) 

(l-z^y-{ {l-z^)^h 
S{2P+3) 

+0(s^), 

1 /xyr v+l/2a\ 

2^+l \o: /L 2 \x/ 
r(j^+l)/2a\2 -1 

8 \x. 

;?til(«^) = 
2(i'+l) /x> 

2v+3)\a/ 

X 1+ 1 - )+0(x-^) . (4.15) 
L 2iv+l)\xJ J 

Comparing (4.3) and (4.13) with (4.15), we see 

= r(2^+2)/r(f'+i)r(v+2), (4.I6) 
where the subscript 0 indicates to take the leading term. 
The value in the right-hand side of (4.16) tends to unity 
in the weak coupling limit X —̂  0 as is expected. As for 

iv(v-l-l) 
hiKz) = c\— -C( l - s2 ) - ' -2 ( l - z2 ) - i ] 

I 2(v+l) 
v(v-l-l) 

16(j'+l)(2i'+3) 

-2(«'2-2)(l-s2)--4(2;^+3)(l_22)^i-|^ 

+0(s'), (4.17) 

where c is a certain ^-dependent constant. In the above 
calculation, we have used a formula 

J-i r(M+2^+2) 

k 22*-2^ir(M+2j) 
X E (1-22)"+^ (4.18) 

y=o j ! r ( M + i + l ) 
^This can be seen most easily by differentiating (3.8) with 

respect to a. 
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where ^ is a nonnegative integer, /x being arbitrary. The 
proof of (4.18) is given in Appendix D. 

Now, as is easily derived from (2,15), gyi^(z) for 
general s satisfies 

gviKz)^—:!: 
2{p-2) i=o T(v-i+2Xp~l-3)l 

XJ dz^\:R(z/)J-^'MzOg.i'W), (4.19) 

where 
/o(^)--i[>(2)]-^+Cp(2)]-^ 

/ l (2)^Cp(2)] -^ 

/ 2 ( z )^ [p (2 ) ] - ^ (4.20) 

Making an ansatz 

gj{z)=c(v-i-i)iv-i-2)ha-z'y 
r 2(^-1) 

+b\ ii-z^y-' ( i - 2 2 ) - 2 
L 2 v - l 

+ 1 : aj{l-z'y-^'^'s\+0(s^), (4.21) 
; = 0 

and using (4.18), we obtain 

^o=(^+2)(^+3)/26(2^+3), 

« i=C~(^-2)+2K^+l)y/16(2 .+3) , 

^=- (2 i . - l ) (2^ -3 ) /8 ( ; . - l ) (^+ l ) ; (4.22) 

^2 is indefinite if we do not consider the second order of 
s, az depending on ^2. One should notice that the quan­
tity in the square bracket of (4.21) is just proportional 
to the abnormal solution with fc= 2 at 5 = 0 . On the other 
hand, (3.13) together with (3.6) gives 

( v-1 
2,,K^)== const 1 ( 1 - 0 ^ ) ' ' - — - — 

I 2(y+l) 

r 2(z/-l) 
X (l-^^)"-^ ( l - 2 2 ) - 2 

L 2 J /~1 

(4.23) 

Thus (4.21) at ^ = 0 is not equal to (4.23). The difference 
between them is nothing but the contribution from the 
abnormal solution with K = 2 . 

5. CONCLUSIONS 

In this paper, we have investigated the relation be­
tween the asymptotic expansion of the Green's function 
in the crossed channel and the solutions of the Bethe-
Salpeter equation by using the scalar-photon-exchange 
model. Our conclusions are as follows. 

(1) In the case mi=m27^'VQ=Wo, we have the exact 
correspondence between the asymptotic expansion of 

the Green's function and the solutions of the Bethe-
Salpeter equation if we consider the expansion in powers 
^f {—t—oi) instead of {—t), where a=mP'~VQ. 

(2) All normal solutions appear in this expansion. 
(3) No abnormal solutions with odd K appear. 
(4) Abnormal solutions with even K seem to appear in 

the asymptotic expansion, but they disappear if one 
considers the forward scattering only. 

(5) When the Cutkosky equation has no solution on 
account of degeneracy, a logarithmic function of / can 
appear in the asymptotic expansion. 

(6) In the case mi7^m<i or z^o^^^o, it seems to be 
difficult to establish some relation between the asymp­
totic expansion and the solutions of the Bethe-Salpeter 
equation except for the leading term.^ 

Finally, we note that as a by-product of the expres­
sion for X given in (4.17) we expHcitly obtain the gradi­
ent at ^ = 0 of the Regge trajectories corresponding to 
normal solutions. We find 

dv 

ds 

v{v+\Y 
(5.1) 

2(2^+l)(2z^+3) 

where v is given by (3.4). Since 

z^=/+^+l(.^=0, l , 2 , - - 0 , 

all these Regge trajectories have the same positive 
slope (5.1). 

APPENDIX A: SOLUTION IN THE CASE }i9^2m 

I t is not easy to find the solution in closed form in the 
case ix9^2m even if ^ = 0 . Hence, we shall consider a re­
duced equation only: 

^[o](^) = l + X / dx'[\ ) 
Jo \ x){\-\-x')ix^-\-x"' 

(Al) 

where we put ;;^= 1. We can easily transform (Al) into a 
differential equation 

^2;^ 101 2 #10 ] 

with 

dx^ X dx (l+x)jLt2+a;2 

^"'i(0) = l , 

^[oi'(o) = 0. 

i f c i^O, (A2) 

(A3) 

(A4) 

I t turns out that (A4) is actually unnecessary to deter­
mine i/^^'^ix). As was already seen in I, the solution to 
(A2) with (A3) in case of /i==2 is 

\/^M=2^^K^)=i^(-^,^+i;f; -.^V8(2-|-x)) (A5) 

with 

^ ^ ( X - f i ) i / 2 ^ | . (A6) 

In the case M ^ 2 , by considering x^^^^^ (A2) can be 
transformed into a hypergeometric equation. After 
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some arrangement, for 0< iu<2 , we have into (Bl), and using a formula given in (A22) of I, we 
obtain 

-,.„> [(l+iV+^T'-imC-PA-feWCI)] , . „ 
*"'"^ »R.[p. .c-«F.xi .)] •'"' . SC^-*+«]«v 
with H(x) = 6 L ( - ) , (B3) 

?o- iMV(V-M^)^ 'S (A8) 

where i = ( - 1 ) 1 / 2 and P /denotes an associated Legendre / ^(^/)j^/==^|-/^(„^^ ^ ^ j . 4 . _ ^ / ^ ) _ i - ] ^ (^4) 
function of the first kind. I t is easy to verify that (A7) JQ 
satisfies (A4). For the case M > 2 , we have only to con­
tinue (A7) analytically with respect to /z. Therefore, 

If we consider the limit fx—^O, iJ/^^Hx) is of course f [ l+jEr(x)]= ^(x) , (B5) 
divergent. The main term is 

2^(1^+1)1(^+1)/^ 
where (p{x) is given in (4.11). Hence (4.9) is rewritten as 

^ ^^ r(.+2)r(i.+|) V rp^H^)==<pix)+x — - ( -Utii(^o, (B6) 
Jo a+x\x^ x^/ 

which is easily transformed into a differential equation 

f(v,v,t) = ^- • ' ^ "^ ^ _ rd' 6 d 6 X 

Using (3.8), we have 

2T(i.+i)r(.+i)r(-.+i) ^^. ^^ ^ 

Ldx^ xdx x^ x{a+x)J 

X +0(iu-'+i)- (AIO) \^{x) 
(l-v)-^'- Xbl^i'Kx)->p(x)-] = , (B7) 

x(a-{-x) 
If (Al) is solved by an iteration method, and if we take with 
the leading part of each term as ju —̂  0, then we have ^ I'l (0) = »(0) = - . (B8) 

^ . o i ( , ) ^ f (XV..)Cln( . /M)]"=( . /M)\ (x^O) (Al l ) ^ " " ' " ^ ^ ( . ) . . ^ C ^ m ( , ) _ , ( , ) 3 , (B9) 

, . , . . , , ,. ,. . we have 
a result which is correct m the weak coupling limit 
X-> 0. x{a+x)p'(x)+2(a+x)^'{x)-X{p(x)^Xx^ip(x). (BIO) 

In the above, we have considered the scattering ampli­
tude by first putting z;o=l and next taking the limit The homogeneous part of (BIO) is satisfied by ^ioi(^). 
M->0. If we first put M=0 and later take the limit Hence the function 
VQ~> 1, from (4.3) we obtain x(^)=H^)/4^^^K^) (B l l ) 

T(2v+1) satisfies 

^^ ' ^^ ' ' ^ ^ r ( .+ l ) r ( . + 2 ) x(a+xW<^K^)x'\x)+2{a+x)l^P^'Kx) 
. +x^|^^'nx)^]x'(x) = \x'<p(x). (B12) 

' ^ L l ^ J +^^^^~^'°)~'"^'^- ^^^^^ Since (B12) is a linear differential equation of the first 
order for x'(^)) it can be solved by the standard method. 

APPENDIX B: DERIVATION OF (4.10) 

We first calculate APPENDIX C: DIVERGENCE OF THE 
CUTKOSKY SOLUTION 

H{x)^\\ ( l ~ 3 h2—y^oK^O. (Bl) We consider 
7o a + x A x'^ x^ J 

{n-l-j~l)\ ri 
Inserting the expansion of {a-\-x)-^ and hj^^^^~ -— / dz z^gQniHz) (CI) 

{n-j+l)\ 7_i 
ypm{x)=^F{-v, v+1] 2; -x/a) 

^_j in case of ^ = 0. Then the Cutkosky equation yields 

ncx-i(i+i)] 
00 i=o 

n{n-\-l) 3 

A"O k\{k+l)\ \aJ ' ' " {n—j){n—j-\rl) i^^ 
= E — f - ) (B2) ŷco) = ^ — : E ^/^^, (C2) 

)! W 



B1838 N O B O R U N A K A N I S H I 

;«/«= 
n(n+l) 

(n-j+2)in-j+3) 

X kh 
2^,-(o) 

with ^ ' = m m ( ^ , m~k). Since Km-k=^Kk^ i t is sufficient 
to consider i r^ for k'^[_m/2~\. Comparing (D5) with the 
expansion formula of a hypergeometr ic function, we find 

+hi (2) (C3) Ki,=^lm\/k\{m-kyr\F{-k, -m+k; -m+1; 1) 

A; 

= 5o*. (D6) 

The solution to (C2) is^ 

A .(0) = (_ i)/(2„_ j) !/y!(«- j) ! ( „ - y+1)! (C4) 

apart from an arbitrary common factor. Substitution of 

(C2) and (C4) in (C3) yields Substitution of (D6) in (D4) leads to KJj) = K^(z). 
ho^^^={2n)\/{2n+3)nl{n+l)\, (C5) Now, (Dl) together with (D3) yields 

^j(2)=_(^+3)(2„_i)! / (2«+3)(«-l)!(«+!)! , (C6) , 2^-2^1 

and / . * ( z ) = E - ^ - 4 - ( l - 2 ^ ) ' ' + ^ (D7) 
y=o 7! 

A2^^>=-[2(2/^-2)!/ ^j^j^ 
(2;z+3)(^-1) Kn+1) !]+^2^2^. (C7) 

Thejast equation leads us to h2.^^^=^. Thus goni^iz) 
cannot be an integrable function. 

Lj^ Y: . (D8) 
i=o (fi+k+i+1) {k--2j+i+l)l 

APPENDIX D : PROOF OF (4.18) Here, if 2j>k+l, the terms of i<2j—k—l give no 
contribution because their denominators are infinite. 

=^{i-zy( dz\\+z'\ 

Lj—LjQ-jrjLji^ (D9) 

where^ 

where 

y+'ii-z'y+iz-^-z) 

y-o 

XkCj{n+k+j+l)~^Ku+i+i(z), (Dl) 

iiC».(2)=(l+2)'"+(l-2)"'. (D2) 

We shall first show that (D2) can be rewritten as 

[m/21 W 2 ' " - 2 - ' ( O T — J — 1 ) ! 
Kmiz)= E (-1)^^ ——{l-z^y, (D3) 

y=o jl{m—2j)l 

where w(w—i—1)1=0!= 1 for m=j=0. 
The right-hand side of (D3), which is denoted by 

Km(z), can be written in the form 

J-'r, 
ft ( - l )^-+ '*Ci(^- i+i+l -m)! 

"i-o ( j«+^+ j+ i ) (^_2 j+ j+ l ) ! 

= ( - i y Z ( - i ) ' f t C i 
i=0 

•/0 

(^K3-m 

r(M+2i) 
(ixx' '+*(l —x)* 

_ klV(fi+k+l)V(^+2j) 

''T{n+2k+2)Tin+j+m) 

Hence, 

/L (2 )=E^^ - ( l+z )* ( l -2 ) " ' - * 
k=Q 

(D4) 
£,= 

by multiplying it by 1 = {|[(l+z)+(l-2)]}'"~^^'. Here, 

lx-klT(^,+k+l)r(fi+2j) 

r(M+2^+2)r(M+y+i) 

(DIO) 

(DID 

k' m{m—j—1)1 
Kk^ni-iy-

Thus (D7) together with (DU) gives (4.18). 

y==o jKk-j)K^-k—j)l' 
(D5) 

7 We may assume j > w because wheny=0 we need Ljo only. 


