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The reduction of T, to Ti;, however, is effected by the
residual propagator

T1= |a{(W—Eot(a| V]a)) e .

These choices correspond to using the quasiparticle
formalism for the first two reductions and using the
projection operator formalism for the third reduction.
As a result one finds that besides Eq. (62) the physical
equivalence of the augmented system to the original
system requires W—E,—(a| Tu|a)=—E.—{(a|T1|a).
Thus the equivalence obtains only in the limit E,>W.
But it is seen that if the projection operator formalism
is used for all three reductions, then the equivalence
can be made exact.

We have shown how an elementary particle state can
be used to represent a bound state of the system. There
is no reason why we cannot reverse the procedure and
use a bound state to replace an elementary-particle
state. One merely regards Eq. (43) as a complete
definition of H, Ho, and V rather than a partial defini-
tion of H, Ho, and V. Since H;=Hy+V; is now the
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starting point, V must be defined in terms of V;
V=V,—V,r'V,
I'=—(1-GQVy)1GQ
= |} (Bat{e| Va|o) = W) e| . (66)
Equation (62) now plays the role of the definition of
the matrix elements of ¥ with respect to the new bound

state |a).
(e|V]a)=(a|V]e)

V|a)=PV|a). (67)

We conclude that it is always possible to interpret
the discrete states of a system either as bound states
or as elementary-particle states since the formalism
presented in this section allows us to switch from the
one description to the other.
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The high-energy asymptotic expansion of the Green’s function for the scattering of two scalar particles in
the crossed channel (¢ channel) is investigated in the ladder approximation by using the scalar-photon-
exchange model with scalar coupling. It is shown that each term of the asymptotic expansion in the ¢ channel
exactly corresponds to the solutions of the Bethe-Salpeter equation for bound states if one considers the ex-
pansion in powers of (—f—m?-+19,) instead of (—¢), where m and v,'? are the internal mass and the constant
external mass (vo>%m?), respectively. It is proved that all normal solutions of the Bethe-Salpeter equation
appear in this expansion. The problem of whether or not abnormal solutions also appear in this expansion is
analyzed in detail. Exact solutions in some special cases are presented and discussed.

1. INTRODUCTION

N a previous paper,! which we shall refer to as I, we
obtained the exact solution to the Bethe-Salpeter-
type integral equation for the off-the-mass-shell scat-
tering amplitude in the case u'=0, u=2m, and s=0,
where ' and u are the exchanged-meson masses in the
kernel and in the inhomogeneous term, respectively, s
being the invariant energy; and we investigated its
high-energy asymptotic expansion in the crossed channel
(t channel). It was found there that in our model the
leading term and the second one exactly correspond to
the normal solutions of the Bethe-Salpeter equation for

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.
1 N. Nakanishi, Phys. Rev. 135, B1430 (1964).

bound states with n=I41 and n=I42, respectively,
but the third term does not correspond to those with
n=143, where » and [ are the principal and the azi-
muthal quantrum numbers, respectively. Since we artifi-
cially introduced a massive meson only in the inhomo-
geneous term in order to avoid infrared divergence, it
was not clear whether or not the above result was owing
to the introduction of the special meson.

The purpose of the present paper is to discuss the
high-energy asymptotic expansion (in the crossed
channel) of the Green’s function for the scattering of two
scalar particles in the Bethe-Salpeter formalism in the
case ' =pu=0 and s arbitrary. In spite of its similarity
to the equation discussed in I, it is, unfortunately, ex-
tremely difficult to find the exact solution (in closed
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form) to the integral equation which we encounter here,

except for a very special case which we already dis-
cussed elsewhere.? However, we can investigate the
properties of the asymptotic expansion of the Green’s
function by making some ansatz. We shall make use of
the analogy from the exact solution obtained in I as
well as possible.

In the next section, we summarize various forms of
the integral equation for the weight function of the
perturbation-theoretical integral representation. In Sec.
3, we investigate relations between the coefficients in
the asymptotic expansion of the scattering amplitude
and the solutions of the Bethe-Salpeter equation. In
Sec. 4, the problem of abnormal solutions is discussed in
detail. Some conclusions are presented in the final
section.

2. PRELIMINARIES

We consider the integral equation

(ms* =) (ma?—w) f(o,w,1)

_ ! :>\ /d4p’ & ) (2.1)

wi—t % W= (p—p)?’
with
(k+9)?=v, (k+p)’=v, (k+p)2=",
(k—Q)Zzw% (k_P)Zzwr (k"—'P,)z:w,a (22)
@hy=s,  (p=qy'=t, (/—gr=t,

where we have omitted —ie in the denominators for
simplicity. In (2.2), 2k stands for the total four-
momentum, ¢, p’, and p denoting the relative momenta
in the initial, an intermediate, and the final state, re-
spectively. When s<(mi+m2)?, the off-the-mass-shell
scattering amplitude f(v,w,) has the perturbation-
theoretical integral representation:

fowd)= / 4y [_ E / " iy

% <P(y,2>')’)
[+ (1—9)8G0w) +y(w2—)

2.3)
with
B(zv,w)=3(1+42)(m2—v)+3(1—2)(m2—w). (2.4)

By a slight generalization of our previous work,? we get

1 1 00
e(37)=(1—9)8(v)+\ / dy’ / dz' / dy'
0 -1 0
XK@z7;9 8 7)oy 7)), (2.5)

2 N. Nakanishi, Nuovo Cimento (to be published).
8 N. Nakanishi, Phys. Rev. 133, B214 (1964).
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K(y,2v; 5,8 %") .
=1y(1—-5) 003,y ) f (1—£)2de
0

X(EA=8)y'y—y[(1—= v+ &>+ (1—£) %y u?
+(1—82'(1—9)a(z)+(1—£)2(1—y)%()]),

(2.6)
where (1—y)
yUl—=y
O syt Ret) =5 —=), ()
y'(1—y)
153
R(z,2)= for z=7, (2.8)
17

a(2)=1(142)(ms2—vo) +3(1—32) (ma2—wy) , (2.9)
o(8)=5(1+2)m2+3(1—2)m2—3(1—2%)s. (2.10)

In particular, in case of u’=0, the kernel (2.6) re-
duces to

K(y>zy'y; ylazlﬂ”)
101 ! 5 NS (Vy— vy
_ 5(1—9)0(3,5",2,2)8(yv—3v") @1
v+ ¥y (1=y)a(z)+ (11— ") %()
Putting
o(y,2,7)=8(v)(1—9)6(y,2) , (2.12)
we have
1 1
son=1+n [ oz [ ay
—1 0
—1(1—+")O /, , ’ /, ’
¥ (1= 0(y,y",2,2)9(y'2) 1)
Yty (1=y)a(z)+(1—")(z")
If we introduce a variable x through
yl(1—y)=x, (2.14)
then ¢(y,2)=y(x,2) satisfies
1 zR(z,2")
gb(x,z):l—l-%)\/ dz'/ dx’
-1 0
hdsdal (2.15)

X .
(Ao o' a(z)) +a"20(z")

When the denominator of the integrand is positive-
definite, (2.15) is a Volterra integral equation so that
its Neumann series converges for any value of N\ and
gives the unique solution. Hence, y(x,2) is an entire
function of A and holomorphic in the s plane with a cut
§2> (my+ma)? if p2+my2>vy and u+me?>w,. Further-
more, on account of the positive definiteness of the
kernel, we have ¢(x,2)>1 for A>0.

Now, if we consider the case m1=mas=m and vo=wy,
the kernel is invariant under the transformationz— —3z
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and 2’ — —2’. This means thaty¥(x,—2) is also a solution
of (2.15) if Y(x,2) is so. Thus because of the uniqueness
of the solution, ¥(#,z) must be an even function of z.
Furthermore, if s=0 then the kernel is independent of z
and 2z’ except in R(2,2'). Defining

1
p=t[ EU-WeD, @19
and using formulas
1
/dz0(R(z,z’)——X)=2(1—X)0(1—~X),
—~1
1 217)
/dz(l—z2)0(R(z,z’)—X)=[43—(1—-X)2(1+2X)
- F2X(1-X) (1—5) J(1—X),
etc., we obtain a set of reduced equations
2 ’ 71,001 ( ne!
Y11 () = 14\ / dx’(l—x~>w, (2.18)
0 x (")
@ % x’\? 2%’
P =32 / dx'——[%(l——) (1+~)
o () % x
xlg xl
xp)+— (1= i) |, @19)
x? x
etc., where
n(x)= (14 x) w2+ x(m2— o)+ x2m?. (2.20)

The formulas (2.17) can be applied to (2.5) to get a set
of reduced equations in case of u'#0. Of course, if one
wants to have the equation for /! alone, it can easily
be obtained directly from (2.1) with v=1w and m;=ms,.

3. ASYMPTOTIC EXPANSION

We first consider the case vy=wo=m2=m.® and
u#0. We denote y(x,z) in this case by {¥(x,3). In par-
ticular, when s=0 and wu=2m with m=1, (2.15)
becomes

1 SR g (x )
J(x,2)= 1—{—%7\/ dz’f dx'— . (3.1)
-1 0 (2"‘90’)2

The exact solution to (3.1) was found in I. We shall dis-
cuss the case u%2m in Appendix A.

Now, for the sake of later convenience, we consider a
slightly generalized equation,

1 zR(z,2') x_’&(x/’z/)
J(x,2)= 1+%)\f dz’/ de'——, (3.2)
—1 0 (a-i—x’)”

which is obtained by transforming x into 2x/a. The
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solution to (3.2) is given by

2 1_ 2
J(x,z)=F<—v, v+1;1; —u) ,  (3.3)
4ala+tx)
v=0kDa-4,

where F stands for a hypergeometric function.

The behavior of the scattering amplitude as — is
determined by the behavior of the weight function at
y=0,® but it is convenient to consider the asymptotic
expansion of the latter in powers of x rather than in
powers of y~*. The transformation formula of the hyper-
geometric function leads to

B T'(2v+1) rx2(1—z2):|”
x,3) =

[T(+1) L da(at2)
4a(atx)
x2(1—22)
= 5 (= D)) (/@)= 0(),

=0

with
(3.4)

XF(—V, —v; —2; — )—I—O(x_”_l)

(3.5)
i (—1)2720-9T(2p—i+1)T v+ j— 24)

=0 l(J—)[T—i+1) 2T (r—1i)
X (1—z2)t,

(3.6)
We introduce a quantity

Flow,t)= f dy / dz
T (=)
X

[(1—9)B(z,0,w)+y(2a— 1)’

which, of course, represents a scattering amplitude only
when a=2. We notice a formula

/‘ p (1—y)xe
(3.8)

y—
[(1—y)A+yBT
=iT'(1—a)T(a+2)4A—* 2B,
where « is defined by (2.14). This formula is valid for
1>Rea>—2, but if we take Hadamard’s finite part?
in the left-hand side, (3.8) can be used also for Rea>1.
Applying (3.8) to (3.7) with (3.5), we have

(3.7)

Fooi)=1 3 (= D)(—vt -+ DT (—j+2)

L) Qe
% o(£2)
-1 [ﬂ(z;v’w)]y_ﬁz av—j
- [;‘i_” Hi(v,w)(20) (=)~ 140(72),  (3.9)
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with (
1 & 20 (v— 742
Hi(vw)= T v i+2)
sinpr 2T(v—k) i=0 k—!
1 ﬁ .
X dz—————i(—z-z——————. (3.10)
-1 I::B(Zvaw):lv_Hz

We have thus obtained the complete asymptotic ex-
pansion of f(v,w,f). _

In order to see the nature of /;(z), we substitute (3.5)
and

(ata)y2=a? ?::0<—1>f<j+1><a/x>f (3.11)

in (3.2), and compare the coefficients of each power of
x. Then it is seen that %;(z) must be a solution of a
homogeneous equation

S (j—it1)

(o) =
T

X / d5'[R(z,2) hi(2). (3.12)

-1
Therefore, the quantity
2.1(5)=[2-T(v— j+2)/(k—5)'1ki(2) ,
(I=v—Fk—-1),
appearing in the expression for H,(v,w) satisfies
by i j—i+1T—j+2)(p—1—i—1)!
2—j7) =0 27 T(—i+2)(p—Ii—j—1)!

(3.13)

§»z"(z) =

Xf dZ[R(z,2) I 7g4(z) . (3.14)

-1

When »=# (a positive integer), (3.14) would be identi-
cal with the Cutkosky equation* if the factor
(j—1i+1)/27¢ were absent. This factor is equal to unity
only when j=0 or j=1. This is the reason why only the
leading term and the second one correspond to the solu-
tions of the Bethe-Salpeter equation.! However, from
this reasoning alone it cannot be inferred whether or not
Z.(2) (j=0,1) corresponds to normal solutions. From
the explicit expression given in I or (3.6), we know that

#.1(z) = constgonr’(z) for j=0,1, (3.15)

where g:n1(z) denotes the Cutkosky function.

The reason why the third term does not correspond to
the Cutkosky function seems thus to be due to the fact
that the inhomogeneous term in the original equation is
different from the kernel, because the unpleasant factor
(j—i+1) originates from (3.11). Hence we shall next
consider the case u=0 but a(z)7%0. Then f(v,0,)
is essentially the Green’s function apart from the

4R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
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6-function term and some constant factors. From (2.15)

we have

)\ 1 zR(z,2") ‘l/(xgz/)
Y(x,2)=14- dz’/ do/———— .
2J, 0 a(z’)+2"o(z")
It is extremely difficult to solve (3.16) in closed form
even if m;=msZv,=wy and s=0. However, we can
apply the method mentioned just above to (3.16) in
the general case. We introduce an ansatz

(3.16)

tr+1]
Y(x,2)= 3 (—1)%hi(2) (x/a) (3.17)
=0
in analogy with (3.5), but in (3.17) » is now a function of
s.In (3.17), ais an arbitrary constant having the dimen-

sion of squared mass, say a=a(}). Substitution of
(3.17) in (3.16) yields

A i [t [R5
hi(s)= =
7 20— g) = /_ [o(e) -+
X[@]]_zki(z’). (3.18)
Since i ;;( )
1 1 — (.2
(vw,)= | dz| dy , (3.19
i /_ / “L1—5)BG00)+y(—1) T (19
(3.8) leads to
[v+1]
o)zt é(—l)fr(—u+j+1>r<u—j+2)
1 hj EAY e |
d ) (=9 (3.20)

a7

X &
-1 Eﬂ(zxv,w)]hﬁz
As is easily seen, the coefficients of (—¢)*~1 do not
directly relate to the solutions of the Bethe-Salpeter
equation except for the leading term j=O0. Thus the
simple analogy from the Regge-pole theory in the non-
relativistic potential scattering seems not to be valid in
field theory.
In order to find some relation with the solution of the
Bethe-Salpeter equation, we consider the special case
m1=me#vo=w, hereafter. Then

(3.21)

An analogous function to H;(v,w) given in (3.10) can be
obtained if we consider an expansion in powers of
(—t—a) instead of (—#):

a(z)=m?—v=a.

[v+1]
fw )= 3. Hi(v,w)a ¥ (—t—a)~*1, (3.22)
k=0

with ) —42)
™ k v—17
Hi(v,w)=—

sinpr 2T(v—k) i=0 (k—j)!

! hj(z)
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Then the function

&' (3)=[T(v— j+2)/(k— 5) ! 1hi(2)
(I=v—Fk+1) (3.24)

appearing in (3.23) satisfies
A i Tr—j+2)p—1—i—1)!
2(p—7) i=0 T(r—i+2)p—I—j—1)!

' RG]
X d vli ZI .
/_1 T

When v=1, (3.25) is exactly identical with the Cutkosky
equation. Thus H(v,w) exactly corresponds to the solu-
tions of the Bethe-Salpeter equation with n=I+k+1.
But from this reasoning alone we cannot infer whether
these solutions are normal or abnormal. To determine
this, it is sufficient to consider a special case s=0.
In this case, since (3.16) and (3.2) have precisely the
same asymptotic form for large « in their iterative
expansions, the leading term of ¥(x,5) should be equal
to that of {¥(x,2) in the weak coupling limit A — 0.
Therefore, the functions Hi(v,w) must be normal
solutions.

The above conclusion does not, however, exclude the
possible appearance of abnormal solutions in the asymp-
totic expansion of ¥(x,z), because instead of (3.17) we
should take a more general ansatz

gvlj(z) =

(3.25)

o Dyl
Y= X (=) (x/a)7,  (3.20)

k=0 J=0

where #,;(z) satisfies (3.18). We cannot easily see
whether or not the series of abnormal solutions (x>0)
are present. But since ¥(x,2) is an even function of z
the abnormal solutions of odd « cannot appear in (3.26).

4, PROBLEM OF ABNORMAL SOLUTIONS

In order to investigate whether or not the series of
k=2 exists in (3.26), we shall consider the reduced
equations (2.18) and (2.19) in this section. Considering
the case my=m2=1, vo=w,, and s=0, we have

o, 101 (2
VO

1//[01(x)=1+)\/ dx’(l——~ .
0 a—l—x’

X
The solution to this equation was already given in our
short note?:

YO (@) =F(—»,v+1; 2; —a/a),
where » is given by (3.4), and a=1—1,. The asymptotic

(4.2)

5 This reasoning is not rigorous. We shall explicitly verify this
statement by special cases in the next section.

NOBORU NAKANISHI

expansion of ¢(x) is
[+11]

Ir'(2v—j+1
()= 5 '( J+1
i=0 T(r—j+ 1T (—j+2)j!

X (f>w—j+ o(x™1).

o

(4.3)

Considering the forward scattering in the ¢ channel in
which v=w, we have

v+11 T(2v— j+1)T(—v+5+1)

foph)= 3 .
=0 T(r—j+1)j5!
NS
———— s, 0 —2
B0 I+
[v+11
= kz=jo Hi(w)aH*(—1—a)—*14-0(172), (4.4)
where
H(v) '
-  sinvrr T(v—k)
r (—1)T(2v—j4+1 1
X2 A 4.5)

=0 jU(k— j)I0(r— j+1) [B(o) P2’
with B(v)=1—v9. It is easy to see that the functions

n—Il—1

Yn®) S
= [s)]

are the normal solutions of the corresponding Bethe-
Salpeter equation, where Yu.(p) stands for a solid
harmonic, and

gon’=(—1)1(2n— )Y/ ji(n— ) (n—1—j—1L.

(4.6)

(4.7)

Thus the normal solutions only appear in the asymptotic
expansion of ¥[(x). From this result, however, we
cannot conclude that the same is true for ¢(x,2), because
the abnormal solutions vanish when integrated over z
from —1 to 41 as is seen from

1
/ dz(1—22)CeH2(z)=0 for «x=1,2,---, (4.8)

-1

where C#(z) denotes a Gegenbauer polynomial. Since
abnormal solutions have explicit dependence on p,
when the total four-momentum vanishes, they cannot
appear in the asymptotic expansion of the forward scat-
tering amplitude even in the case u'520 because of
Lorentz invariance.

In order to explore the problem of abnormal solutions,
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therefore, we must consider ¢1(x) at least:
= dy’ 2 x'2 «f?
PO =4 f : [—(1—3-+2—)¢m<x'>
3 %2

0 ata
_,_(x_lz_fl_s)\[,m(x'):l (4.9)

x2

where y[91(x) is given by (4.2). As shown in Appendix B,
the exact solution to (4.9) is given by

YU () = o(x) a2 0 (x)x(x) , (4.10)
with
e(x)=3[F(—»,v+1;4; —x/a)
—@/a)F (—v,v+1;4; —x/a)], (4.11)
(@)= / a0 (/) ]2
'3
X/ dx"’ YN o(x"). (4.12)
0 a—l—x”

After somewhat tedious calculation, we obtain the

asymptotic expansion of ¢(x):
v(v+2) fa
e
2+ \x

2T(2v+1) /x)"[
(2+3)[ T+ 1) \a
v a\?
, () n()0wn].
2(2v—1)(2v+1)\x a
For the sake of comparison, we write here the asymp-
totic expansions of

Y (x)=

=t ai-oPe) @1
for j=0, 1. B
, _ /x | V+1/2a
poa)= 2v+1\a>|: 2 \« )
v(v+1) /20 .
s (x) 06 ),
2041)  /x\?
7 [
Vi) (2v+1)(2v—|—3)< )
v(v+2) _2
X|:1+2(V+ )( )-l-O(r ):I (4.15)
Comparing (4.3) and (4.13) with (4.15), we see
Yol (x) /o0 () = o 11 (i) /o 11 (i)
=T(2»+2)/T(+1)T(+2), (4.16)

where the subscript O indicates to take the leading term.
The value in the right-hand side of (4.16) tends to unity
in the weak coupling limit A — 0 as is expected. As for

B 1835

the second terms, their ratios to the respective leading
terms coincide for ¢ /1(x) and JU(x) if we make « in
the former correspond to 2« in the latter [cf. (3.7)7].
Thus we may infer that the leading and the second term
in the asymptotic expansion of f(v,w,) in powers of
(—t—a) correspond to the normal solutions with
n=141 and those with #=1-2, respectively.

Now the problem is the third term. The appearance
of a logarithmic function in the third term of (4.13) is
remarkable. It gives a term behaving like (—¢#)*3In(—1)
in the asymptotic expansion of f(v,,t).5 It corresponds
to a double Regge pole in the complex angular momen-
tum plane. The appearance of a logarithmic function
contradicts our ansatz (3.17) or (3.26). Such a situation
can happen only when the Cutkosky equation (3.25)
has no solution. Indeed, we shall show in Appendix C
that go.:2(2) is divergent at s=0. This peculiar situation
is, of course, due to the degeneracy with the abnormal
solution with k=2.

We may thus infer that the asymptotic expansion of
¥(x,2) is much disturbed by the presence of abnormal
solutions. Unfortunately, it is very difficult to show
explicitly the existence of the series of the abnormal solu-
tions with k=2 in (3.26). Instead, we shall content our-
selves by showing that {¥(x,2) indeed has the contribu-
tion from the abnormal solution with k=2,

In order to avoid the difficulty of degeneracy at s=0,
we consider the solution up to the first order of s.
Since %,,°(z) and .,;'(z) satisfy the Cutkosky equation
(3.25), we easily obtain

v(v+1)2
A=y(+1)— s+0(s?),
2(+3)
¥ .0 —_ — o2\ ( + ) — 2 1 2
Zu (z)—c[(l 22) +8(2v—|—3)(1 Z2)r+ S:I—I-O(s ),
F .1 —_ (V—_) — e2\v __ —_—2)r—1
B =c [ Moy L2
A NP e
T+ D)@+3)

—2(2—2)(1— 22y — 42+ 3) (1—22)1]s

+0(s?), (4.17)

where ¢ is a certain s-dependent constant. In the above
calculation, we have used a formula

[ actry P SETOED
- I(u+2k42)

k2282 (y4-25)
=0 JIT(u+j+1)

6 This can be seen most easily by differentiating (3.8) with
respect to a.

(1—22)ti,  (4.18)
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where £ is a nonnegative integer, u being arbitrary. The
proof of (4.18) is given in Appendix D.

Now, as is easily derived from (2.15), 2..%(2) for
general s satisfies

A 2 T p—I—i—1)!
2,0(2) = > '

2(w—2) i=0 T'(y—i+2)(v—1—3)!

X/ 4 [R(z) T f#)gni (@), (4.19)
where -
fo(®)=—1[p(x) 12+ [o()]7?,
f1(&)=[o(z)]172,
fa@)=Lo(z)]17". (4.20)

Making an ansatz

2.2()=c(r—1—1)(v—1—2) {%(1—32)v

v—1)

+b[<1——z2>v~1—22( <1—z2>*2]

+§ aj(l—-z2)”—f+ls} +0(s?), (4.21)

and using (4.18), we obtain
ao= (+2)(v+3)/28(2v+3),
a=[—@—2)+2@+1)b]/16(2r+3),
=—(2—1)(—3)/8(—1)(»+1);
a. is indefinite if we do not consider the second order of
5, a3 depending on as. One should notice that the quan-
tity in the square bracket of (4.21) is just proportional

to the abnormal solution with k=2 at s=0. On the other
hand, (3.13) together with (3.6) gives

r—1
2(»+1)

20— i) (1_22),.2]} . (4.23)

(4.22)

7,:%(3) = const {%(1 —z?)r—

X[(l—z2)”“—

y—

Thus (4.21) at s=0is not equal to (4.23). The difference
between them is nothing but the contribution from the
abnormal solution with x=2.

5. CONCLUSIONS

In this paper, we have investigated the relation be-
tween the asymptotic expansion of the Green’s function
in the crossed channel and the solutions of the Bethe-
Salpeter equation by using the scalar-photon-exchange
model. Our conclusions are as follows.

(1) In the case mi=mas7vy=1w,, We have the exact
correspondence between the asymptotic expansion of
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the Green’s function and the solutions of the Bethe-
Salpeter equation if we consider the expansion in powers
of (—i—a) instead of (—1t), where a=m?—u,.

(2) All normal solutions appear in this expansion.

(3) No abnormal solutions with odd « appear.

(4) Abnormal solutions with even k seem to appear in
the asymptotic expansion, but they disappear if one
considers the forward scattering only.

(5) When the Cutkosky equation has no solution on
account of degeneracy, a logarithmic function of ¢ can
appear in the asymptotic expansion.

(6) In the case m;7ms or vy%w,, it seems to be
difficult to establish some relation between the asymp-
totic expansion and the solutions of the Bethe-Salpeter
equation except for the leading term.?

Finally, we note that as a by-product of the expres-
sion for A given in (4.17) we explicitly obtain the gradi-
ent at s=0 of the Regge trajectories corresponding to
normal solutions. We find

dy v(v+41)2
= = (5.1)
dslsmo 2(2v+1)(2v+3)

where » is given by (3.4). Since
v=I1+k+1(k=0,1,2,---),
all these Regge trajectories have the same positive
slope (5.1).
APPENDIX A: SOLUTION IN THE CASE u=2m

It is not easy to find the solution in closed form in the
case u7#2m even if s=0. Hence, we shall consider a re-
duced equation only:

/

z 77001 ( !
z,/;[01(%)=1+)\/ dxf<1_£)__xi“i(x_)__. ,
0 x /(142" )ut+a'2

where we put m=1. We can easily transform (A1) into a
differential equation

(A1)

PP 2 gyl A
t Jl1=0, (A2)
dx®  x dx  (14+x)u+a?
with
gr0)=1, (A3)
J11(0)=0. (A4)

It turns out that (A4) is actually unnecessary to deter-
mine ¢19(x). As was already seen in I, the solution to
(A2) with (A3) in case of u=21is
Vum2OV (@) =F(—v,v+1;%; —22/8(2+x))  (A5)
with
y=(HDV—3, (40)

In the case u#2, by considering xJ1, (A2) can be
transformed into a hypergeometric equation. After
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some arrangement, for 0<u<2, we have

LA4-o)u> o ]2 Im[ — P,(— £0) P, () ]

JUI ()= , (AT)
o x Re[ PN (— &) P2 (k)]
with
E=1i(u2x)/ (du2—ph)12,
Lo=1p?/(4uP—p*)' 2, (48)

where 1= (—1)1/2and P,? denotes an associated Legendre
function of the first kind. It is easy to verify that (A7)
satisfies (A4). For the case u>2, we have only to con-
tinue (A7) analytically with respect to p.

If we consider the limit u— 0, ¥ (x) is of course
divergent. The main term is

2T D) /e
 TGADTGHE) \u
Using (3.8), we have
2T+ DT (+3)T(—r+1)
I'(Gv+H)w
(=)

Xt O(uH)
oy (u=*1)

P (x) >v+0(,rv+l). (A9)

Jop )=
(A10)

If (A1) is solved by an iteration method, and if we take
the leading part of each term as u— 0, then we have

‘”"”(x)’”é O/n)[In(e/u) = (/) (40) (Al1)

a result which is correct in the weak coupling limit
A—0.

In the above, we have considered the scattering ampli-
tude by first putting vo=1 and next taking the limit
u— 0. If we first put u=0 and later take the limit
29— 1, from (4.3) we obtain

I'(2»+1)
Tp+1)T(+2)

x
al
1

— 2

YO(2)=

]"+o<<1~vo>-v+1). (A12)

APPENDIX B: DERIVATION OF (4.10)
We first calculate

2 dy x'? xf?
H(x)E)\/ (1——3————]—2——)\#[01(90’). (B1)
o ata S x? X3
Inserting the expansion of (a+x)~! and
YO (x)=F(—»,v+1;2; —x/e)
k=1 .
_ID-iG+0d
== - (B2)

o kl(R+1)! a

k
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into (B1), and using a formula given in (A22) of I, we
obtain

n—1

, Do-sGen)
Hix)— =0 ¥
(®)=62, (n+2)(n+3)(n1)2\a>’ (83)

whence
/H(x’)dx’zx[F(—v,v+1;4; —x/a)—1]. (B4)
0

Therefore,

1+H(x) 1= e(x),

where ¢(x) is given in (4.11). Hence (4.9) is rewritten as

(BSs)

dx’ /%% &3
(55 e, @9

ata'\ a2 x8

which is easily transformed into a differential equation

l:d2'6d46 A :‘
dx? rxdxlx2 x2(atx)

$01()= o) [

Ne(x)
11 (4) — = 7
| XYM —e(x)] ot (B7)
with
YU(0)=¢(0)=%. (B8)
Putting
P =[P (x)— o(x)], (B9)
we have

(et )P (1) +2(at2)P () =M (x) =Mae(x) . (B10)

The homogeneous part of (B10) is satisfied by ¢1(x).
Hence the function

x(x)=P(x) /Y19 (x) (B11)
satisfies
a(ata)P 10 () x"’ (%) +2(a+x) [P 10 (x)
+ a0V () Ix' () = N2 (x) . (B12)

Since (B12) is a linear differential equation of the first
order for x’(x), it can be solved by the standard method.

APPENDIX C: DIVERGENCE OF THE
CUTKOSKY SOLUTION

We consider

(n—l—j—1! 1
hiP = / dz 2 gont’(2) (c1)
(m—j+1D! J
in case of s=0. Then the Cutkosky equation yields
n(n+1) J
1y ©= > b, (c2)

(n—3)(n—j+1) i=0
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n(n+1)
(n—j+2)(n—j+3)

h(z):

j 2h;©
X ZI: G k."”]. (C3)
== on—j+1)
The solution to (C2) is?
hi@=(=1)(2n— 7)1/ ji(n—Hn—j+1)! (C4)

apart from an arbitrary common factor. Substitution of
(C2) and (C4) in (C3) yields

ho@=(2n)/(2n+3)nl(n+1)!, (C5)
n®=—m+3)2n—1)Y/2n4+3)(n—1)(n+1)!, (C6)
and
hoe®=—[2(2n—2)/

2n+3)(n— V) (n+ 1) ]+h®. (CT)

The_ last equation leads us to %@ =c0. Thus gon2(2)
cannot be an integrable function.

APPENDIX D: PROOF OF (4.18)

1

Ju(z)= | dz'[R(z,2)]:(1—22)wt*
-1
==(1—z)”/z di' (142)#tE(1—2" ) e+ (53— —2)
-1
k
= (1= (12
XiCilutk+j+1)" Ky ja(z), (D1)
where
Kn(z)={1+z)"+(1—z)". (D2)

We shall first show that (D2) can be rewritten as

[m/2] m-2m2(p— g —1)! )
Ku(z)= 2 (—1)— : (1—z%)7, (D3)
=0 Jim—27)!

where m(m— j—1)!=0!=1 for m= j=0.
The right-band side of (D3), which is denoted by
Kn(2), can be written in the form

Ru®)= 3 Kp(1+2)i(1—2)m* (D4

by multiplying it by 1= {3[(1+2)-+(1—2) ]} %. Here,

m(m—j—1)!

Ki=3(—1) (D5)

= =5 m—k— )1
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with #’=min(k, m—£k). Since K,,—r= Ky, it is sufficient
to consider K} for k< [m/2]. Comparing (D5) with the
expansion formula of a hypergeometric function, we find

Ky=[m!/k\(m—E) | JF(—k, —m+k; —m-+1;1)

=[mYklm—R)ILL(1—B) IL (—m+ )T

J=1
= Ook. (D6)

Substitution of (D6) in (D4) leads to Kn(z)=Kn(2).
Now, (D1) together with (D3) yields

k 22k—25+1
Jur(2)= 20 ———L;(1—=%)+H,

7=0 J:

(D7)

with

b (—=1)H5Cilk+i4-1)(k— j+1)!
L= - — . (DY)
=0 (utkt+it+1) (k—254+i41)!

Here, if 2j>%41, the terms of 1<2j—k—1 give no
contribution because their denominators are infinite.

Lij=Lj+jLj, (D9)
where”

L f (=176, Colk— j+i+1—m)!
S (uth i 1) (=25 1)1

(1) ; (= 1)1

1 d\m
X / da- xortei-1 (_) Kh—tit—m
0 dx

T 27 1
sV R
T(ut-j+m) Jo
RN E DT (u2)
T(ut 25+ 2)T(utj4m)

Hence,

(D10)

R (k1T (ut25)
" Dt 2k4+2)T(utj+1)
Thus (D7) together with (D11) gives (4.18).

(D11)

7We may assume j >m because when 7=0 we need Lj, only.



